Keragaman Jenis Pohon Pelindung Jalan Pada Jalur Hijau Kota Pekanbaru

Nursal*, Yuslim Fauziah dan Syukria Ihsan Zam Laboratorium Pendidikan Biologi, Jurusan Pendidikan MIPA FKIP
Universitas Riau Pekanbaru 28293

Diterima 20 Oktober 2004 Disetujui 25 Desember 2004

Abstract

The research on diversity of protecting plant at Pekanbaru city had carried out on six main roads. The study had been done with survey methods by transect. One main road is a transect that divide into some intervals 100 meter each ones. Data collecting are diameters of breath high and cover of a tree is length of transect that intercepts by cover of each ones. Parameters are Density, Relative Density, Frequency, Relative Frequency, Dominancy, Relative Dominancy, Coverage, Importance Value and Diversity Index. Another data that collecting are air temperature, relative humidity, light intensity, particulate contents in leaf surface. The results in this research that protecting plants at Pekanbaru city include 13 species eith 8 family, that dominance with Pterocarpus indicus, Swietenia mahagoni and Acacia mangium. Diversity index each location 0.692-1.641, density 1.583-6.6 trees/100 meter length of roads and coverage of trees $\mathbf{7 . 2 8 5 - 3 0 . 3 4 1}$ meters $/ \mathbf{1 0 0}$ meters length of roads. Particulate contens are $\mathbf{0 . 2 1 9 - 0 . 5 8 0 ~ m g / \mathrm { cm } ^ { 2 }}$ of leaf surface.

Keywords: Plant protecting, Pekanbaru city

Pendahuluan

Pencemaran udara di perkotaan merupakan salah satu fenomena lingkungan yang umum terjadi di berbagai kota besar. Pembangunan dan perkembangan kota yang semakin pesat dapat menyebabkan terjadinya penurunan kualitas lingkungan hidup diantaranya meningkatnya akumulasi bahan pencemar di udara yang bersumber dari berbagai aktifitas perkotaan seperti transportasi, industri. pembuangan sampah dan sumber-sumber lainnya. Dari data laporan National Academy of Science (Odum,1993), pencemaran udara yang relatif besar di Amerika Serikat, 59,9\% diantaranya bersumber dari aktifitas transportasi, $15,78 \%$ bersumber dari aktifitas industri dan selebihnya dari aktifitas pembangkit tenaga listrik, pemanas ruangan dan pembakaran sampah.

Sebagai salah satu kota yang sedang berkembang, pembangunan Kota Pekanbaru perlu disertai dengan kearifan dalam mengelola lingkungan hidup agar tetap terpelihara keseimbangan antara fungsi ekologi, ekonomi dan estetika sehingga dapat memberikan citra keindahan dan kenyamanan
bagi masyarakat kota. Hal ini dapat dilakukan antara lain melalui penataan pohon pelindung jalan pada jalur hijau yang merupakan bagian dari hutan kota untuk mengurangi dan menetralisir pengaruh polutan yang cenderung meningkat

Dahlan (1992) mengemukan 24 macam peranan hutan kota dilihat dari aspek ekologi, ekonomi dan estetika. Beberapa diantaranya adalah: berperan dalam pelestarian plasma nutfah, penahan dan penyaring partikel padat dari udara, penyerap dan penjerap partikel timbal, peredam kebisingan, mengurangi bahaya hujan asam, penahan angin, penyerap dan penapis bau, mengatasi penggenangan, mengatasi intusi air laut, ameliorasi iklim, pelestarian air tanah, sebagai habitat burung, mengamankan pantai terhadap abrasi.

Berdasarkan hasil survai awal yang dilakukan ternyata keberadaan pohon pelindung jalan di jalur hijau Kota Pekanbaru masih belum merata pada seluruh ruas jalan, dan pohon pelindung yang sudah ada masih belum tertata dengan baik. Menurut Fandeli (1990), kerapatan minimal tanaman pada jalur hijau adalah 200 atau 100 tegakan pada salah satu sisi jalan.

Penelitian ini dilakukan untuk mengetahui keragaman jenis pohon pelindung

[^0]jalan pada jalur hijau Kota Pekanbaru. Hasilnya diharapkan dapat melengkapi informasi yang sudah ada dalam menata jalur hijau Kota Pekanbaru di masa yang akan datang.

Bahan dan Metode

Penelitian dilakukan Bulan Juni sampai Agustus 2003 pada 6 jalan utama di Kota Pekanbaru yang dipilih secara purposive berdasarkan tingkat kepadatan lalu lintas dengan kategori padat, kurang padat dan jarang masing-masing dengan dua sampel jalan. Jalan yang dipilih sebagai lokasi penelitian meliputi; Jalan Sudirman (lokasi I) sepanjang 8 Km dengan kepadatan lalu lintas 6500 kendaraan bermotor per jam. Jalan SukarnoHatta (lokasi II) sepanjang 12 Km dengan kepadatan lalu lintas 4560 kendaraan bermotor per jam. Jalan Arengka II (lokasi III) sepanjang 3 Km dengan kepadatan lalu lintas 2500 kendaraan bermotor per jam. Jalan Riau (lokasi IV) sepanjang 4 Km dengan kepadatan lalu lintas 2445 kendaraan bermotor per jam. Jalan Arifin Ahmad (lokasi V) sepanjang 3,6 Km dengan kepadatan lalu lintas 2050 kendaraan bermotor per jam dan Jalan Diponegoro (lokasi VI) sepanjang $1,5 \mathrm{Km}$ dengan kepadatan lalu lintas 1650 kendaraan bermotor perjam.

Penelitian dilakukan dengan metode survai, pengumpulan data lapangan menggunakan metode transek (jalur). Masingmasing jalan dianggap satu jalur yang dibagi
menjadi beberapa interval sepanjang 100 m . Semua pohon yang mempunyai diameter lebih dari 10 cm yang terdapat pada masing-masing interval diukur keliling batang setinggi dada dan proyeksi tajuk yaitu panjang ruas jalan yang tertutup/terpotong oleh tajuk pohon. Setiap jenis tumbuhan diambil spesimennya untuk dibuat herbarium, kemudian diidentifikasi di Laboratorium Biologi FKIP Universitas Riau.

Data dianalisis secara kuantitatif menurut Mueller-Dombois dan Ellenberg (1974) untuk mengetahui Kerapatan, Kerapatan Relatif, Frekwensi, Frekwensi Relatif, Dominansi, Dominansi Relatif, Kerimbunan tajuk, Nilai Penting masing-masing jenis pada tiap lokasi serta Indeks Keanekaragaman pada masingmasing lokasi. Sebagai data penunjang diukur faktor fisika linckungan pada masing-masing lokasi, meliputi; intensitas cahaya, suhu dan kelembaban udara. Pengukuran dilakukan pagi hari ($07.00-09.00 \mathrm{wib}$) dan siang hari ($11.00-$ 13.00 wib) di bawah naungan pohon dan di luar naungan pohon. Kandungan partikulat yang terjerap (teradsorbsi) pada permukaan daun dihitung dengan cara mengambil tiga lembar daun pada kisaran ketinggian 2-4 m dari permukaan tanah. Masing-masing lembar daun ditimbang dengan timbangan analitik untuk mengetahui berat awal, kemudian dibersihkan dengan tissue yang dibasahi alkohol 10% kemudian ditimbang kembali. Daun yang memiliki trikoma dibersihkan dengan cara mengalirkan alkohol pada permukaan daun. Kandungan partikulat yang teradsorbsi adalah selisih berat daun sebelum dibersihkan dengan berat daun setelah dibersihkan.

Tabel 1. Struktur Vegetasi dan Keanekaragaman Jenis Pohon Pelindung Jalan di Jalur Hijau Kota Pekanbaru

Lokasi	Jenis	Suku	F	FR	K	KR	D	DR	NP
I	Ficus benjamina	Moraceae	0.004	0.586	0.004	0.083	0.034	0.129	0.797
	Baccaurea sp	Euphorbiaceae	0.105	15.373	0.447	9.253	1.863	7.062	31.688
	Acacia mangium	Mimosaceae	0.038	5.564	0.076	1.573	0.637	2.415	9.552
	Samanea saman	Mimosaceae	0.004	0.586	0.004	0.083	0.051	0.193	0.862
	Pterocarpus indicus	Fabaceae	0.173	25.329	1.359	28.131	10.217	38.730	92.190
	Delonix regia	Caesalpiniaceae	0.013	1.903	0.017	0.352	0.065	0.246	2.502
	Dillenia sp	Dilleniaceae	0.013	1.903	0.046	0.952	0.203	0.770	3.625
	Swietenia mahagoni	Meliaceae	0.245	35.871	2.633	54.502	12.196	46.232	136.605
	Filicium decipiens	Sapindaceae	0.084	12.299	0.232	4.802	0.992	3.760	20.861
	Elaeis guineensis	Arecaceae	0.004	0.586	0.013	0.269	0.122	0.462	1.317
	JUMLAH		0.683	100.000	4.831	100.000	26.380	100.000	300.000
	Indcks keanckaragaman (H')							1.403	

II	Acacia auriculiformis	Mimosaceae	0.012	1.585	0.012	0.515	0.101	0.870	2.970
	Acacia mangium	Mimosaceae	0.409	54.029	1.107	47.511	6.794	58.493	160.033
	Albizia stipulata	Caesalpiniaceae	0.004	0.528	0.024	1.030	0.136	1.171	2.729
	Samanea saman	Mimosaceae	0.015	1.982	0.059	2.532	0.190	1.636	6.150
	Pterocarpus indicus	Fabaceae	0.163	21.532	0.663	28.455	3.154	27.155	77.142
	Eucalyptus alba	Myrtaceae	0.087	11.493	0.385	16.524	0.964	8.300	36.316
	Swietenia mahgoni	Meliaceae	0.059	7.794	0.072	3.090	0.258	2.221	13.105
	Paronema canescens	Verbenaceae	0.008	1.057	0.008	0.343	0.018	0.155	1.555
	JUMLAH		0.757	100.000	2.330	100.000	11.615	100.000	300.000
	Indeks keanekaragaman (H')								1.272
III	Acacia auriculiformis	Mimosaceae	0.023	2.781	0.081	2.571	0.701	4.324	9.677
	Acacia mangium	Mimosaceae	0.471	56.953	1.759	55.841	11.264	69.484	182.278
	Pterocarpus indicus	Fabaceae	0.322	38.936	1.299	41.238	4.229	26.087	106.261
	Eucalyptus alba	Myrtaceae	0.011	1.330	0.011	0.349	0.017	0.105	1.784
	JUMLAH		0.827	100.000	3.150	100.000	16.211	100.000	300.000
	Indeks keanekaragaman (H')								0.812
IV	Acacia auriculiformis	Mimosaceae	0.012	1.902	0.012	0.758	0.095	1.304	3.964
	Acacia mangium	Mimosaceae	0.155	24.564	0.309	19.520	2.321	31.860	75.944
	Albizia stipulata	Caesalpiniaceae	0.024	3.803	0.036	2.274	0.357	4.900	10.978
	Pterocarpus indicus	Fabaceae	0.083	13.154	0.214	13.519	1.000	13.727	40.399
	Swietenia mahgoni	Meliaceae	0.167	26.466	0.440	27.795	1.726	23.693	77.954
	Mimusops elengi	Sapotaceae	0.071	11.252	0.155	9.792	0.429	5.889	26.932
	Polythea longifolia	Sapindaceae	0.119	18.859	0.417	26.342	1.357	18.627	63.829
	JUMLAH		0.631	100.000	1.583	100.000	7.285	100.000	00.000
	Indeks keanekaragaman (H')								1.692
V	Ficus benjamina	Moraceae	0.009	0.810	0.009	0.136	0.095	0.322	1.268
	Acacia auriculiformis	Mimosaceae	0.029	2.610	0.029	0.439	0.276	0.936	3.985
	Acacia mangium	Mimosaceae	0.143	12.871	0.286	4.333	1.352	4.583	21.787
	Albizia stipulatä	Caesalpiniaceae	0.311	27.993	1.657	25.106	10.933	34.213	87.312
	Pterocarpus indicus	Fabaceae	0.400	36.004	4.200	63.636	16.371	55.492	155.132
	Hibiscus tiliaceus	Malvaceae	0.019	1.710	0.019	0.288	0.095	0.322	2.320
	Swietenia mahgoni	Meliaceae	0.200	18.002	0.400	6.061	1.219	4.132	28.194
	JUMLAH		1.111	100.000	6.600	100.000	30.341	100.000	300.000
	Indeks keanekaragaman (H^{\prime})								1.231
VI	Ficus benjamina	Moraceae	0.024	3.061	0.048	2.102	0.500	4.595	9.758
	Samanea saman	Mimosaceae	0.024	3.061	0.071	3.110	0.500	4.595	10.766
	Pterocarpus indicus	Fabaceae	0.071	9.056	0.166	7.271	1.000	9.189	25.517
	Mimusops elengi	Sapotaceae	0.238	30.357	0.785	34.385	4.762	43.760	108.502
	Filicium decipiens	Sapindaceae	0.190	24.235	0.309	13.535	1.429	13.132	50.901
	Polythea longifolia	Sapindaceae	0.166	21.173	0.714	31.275	2.262	20.787	73.235
	Oreodoxa regia	Arecaceae	0.071	9.056	0.190	8.322	0.429	3.942	21.321
	JUMLAH		0.784	100.000	2.283	100.000	10.882	100.000	300.000
	Indeks keanekaragaman (H')								1.641
	Rata-rata Kerapatan (\%ohon/100m)				3.463				
	Rata-rata Kerimbunan ($\mathrm{m} / 100 \mathrm{~m}$)						17.119		
	Rata-rata Keanekaragaman (H')								1.342

Tabel 2. Hasil Pengukuran dan Analisis Data Keragaman Pohon Pelindung Jalan pada Jalur Hijau Kota Pekanbaru

No	Parameter	Lokasi						Rerata
		1	2	3	4	5	6	
1	Jumlah jenis	10	8	4	7	7	407	7,167
2	Keanekaragaman (H^{\prime})	1,403	1,272	0,812	1,692	1,231	1,641	1,342
3	Kerapatan (pohon/100m)	4,831	2,330	3,150	1,583	6,600	2,283	3,463
4	Kerimbunan ($\mathrm{m} / 100 \mathrm{~m}$)	26,380	11,615	16,211	7,285	30,341	10,882	17,119
5	Kandungan Partikulat ($\mathrm{mg} / \mathrm{cm}^{2}$)	0,447	0,442	0,433	0,219	0,580	0,280	0,400

Keterangan: Lokasi 1. Jalan Sudirman
 Lokasi 2. Jalan Sukarno-Hatta
 Lokasi 3. Jalan Arengka II
 Lokasi 4. Jalan Riau
 Lokasi 5. Jalan Arifin Ahmad Lokasi 6. Jalan Diponegoro

Hasil dan Pembahasan

Secara keseluruhan ditemukan 18 jenis tumbuhan pelindung jalan di Kota Pekanbaru yang tergabung ke dalam 13 Suku (Familia). Berdasarkan Nilai Penting pada masing-masing lokasi, jenis Angsana (Pterocarpus indicus), Mahoni (Swietenia mahagoni), dan Akasia (Acacia mangium) merupakan jenis-jenis yang dominan menurut tabel 1. Data masing-masing parameter pada tiap lokasi yang diteliti disarikan pada tabel 2.

Dari data di atas dapat dilihat bahwa jumlah jenis pohon pelindung jalan di Kota Pekanbaru bervariasi antara 4 sampai 10 jenis pada masing-masing lokasi/jalan. Jumlah jenis yang paling banyak terdapat di Jalan Sudirman dan yang paling sedikit terdapat di Jalan Arengka II. Keanekaragaman jenis pohon pada masing-masing lokasi tergolong sedang dengan indeks keanekaragaman berkisar antara 0,692 sampai 1,641. Keanekaragaman tertinggi terdapat di Jalan Diponegoro dan keanekaragaman terendah terdapat di Jalan Riau. Kerapatan pohon pada masing-masing lokasi berkisar antara 1,583 sampai 6,600 pohon/ 100 m panjang ruas jalan. Kerapatan tertinggi terdapat di Jalan Arifin Ahmad dan kerapatan terendah terdapat di Jalan Riau.

Tabel 3. Rata-rata Kandungan Partikulat $\left(\mathrm{mg} / \mathrm{cm}^{2}\right)$ Pada Permukaan Daun Pohon Pelindung Jalan di Jalur Hijau Kota Pekanbaru

	Nama Jenis	Kandungan partikulat ($\mathrm{mg} / \mathrm{cm}^{2}$)						Rata-rata
		I	II	III	IV	V	VI	
1	Hibiscus tiliaceus					0.896		0.896
2	Swietenia mahagoni	0.902	0.698	0.140	0.273	0.851		0.633
3	Acacia mangium	0.885	0.595	0.525	0.275	0.765		0.609
4	Baccain easp	0.500						0.500
5	Pterocarpus indicus	0.684	0.594	0.193	0.232	0.589	0.481	0.462
6	Mimusops elengi				0.248		0.561	0.405
7	Paronema canescens		0.354					0.354
8	Acacia auriculiformis		0.419	0.575	0.093	0.315		0.351
9	Filicium decipiens	0.257					0.235	0.246
10	Dilenia sp	0.225						0.225
11	Samanea saman	0.152	0.231				0.254	0.212
12	Eucalyptus alba		0.201					0.201
13	Elaeis guineensis	0.193						0.193
14	Polythea longifolia				0.194		0.142	0.168
15	Ficus benjamina	0.227				0.062	0.149	0.646
16	Oreodoxa regia						0.135	0.135
	Rata-rata	0.447	0.442	0.433	0.219	0.580	0.280	0.400

Keterangan:
Lokāsi 1. Jalan Sudirman
Lokasj 2. Jalan Sukarno-Hatta
Lokasi 3. Jalan Arengka II
Lokasi 4. Jalan Riau
Lokasi 5. Jalan Arifin Ahmad
Lokasi 6. Jalan Diponegoro
Kerimbunan tajuk pohon berkisar antara 7,285 sampai $30,341 \mathrm{~m} / 100 \mathrm{~m}$ panjang ruas jalan. Krimbunan tertinggi terdapat di jalan Arifin Ahmad yaitu $30,341 \mathrm{~m} / 100 \mathrm{~m}$ atau $30,341 \%$ dari panjang ruas jalan yang tertutup oleh tajuk pohon. Kerimbunan terendah terdapat di jalan Riau yaitu $7,285 \mathrm{~m} / 100 \mathrm{~m}$ atau $7,285 \%$ dari panjang ruas jalan yang tertutup oleh tajuk pohon. Data selengkapnya dicantumkan pada tabel 3.

Dari data teriihat bahwa tumbuhan pelindung jalan yang terdapat di Kota Pekanbaru masih didominasi oleh jenis-jenis tumbuhan yang umum ditanam sebagai pelindung jalan di Indonesia, seperti: jenis Swietenia mahagoni, Acasia mangium dan Pterocarpus indicus (Zoeraini, 1998). Di Kota Surabaya, jenis Acacia mangium dan Pterocarpus indicus ditanam dengan kerapatan masing-masing 9,910 ind $/ 100 \mathrm{~m}$ dan 8,650 ind $/ 100 \mathrm{~m}$ panjang ruas jalan (Hermanto, 2000). Apabila dibandingkan dengan hasil penelitian tersebut kerapatan tumbuhan pelindung jalan di Kota Pekanbaru umumnya masih rendah dengan rata-rata 3,463 individu $/ 100 \mathrm{~m}$ panjang ruas jalan. Menurut Fandeli (1990), kerapatan total minimal tanaman pada jalur hijau adalah 200 individu/km atau setara dengan 20 individu/ 100 m panjang ruas jalan.

Tingginya nilai kerimbunan menunjukkan tingkat dominansi suatu jenis terhadap ruang akibat tutupan tajuk pohon. Pada Angsana (Pterocarpus indicus) tingginya nilai kerimbunan pohon disebabkan antara lain oleh pamangkasan dahan/ranting pohon yang dilakukan secara berkala yang dapat merangsang tumbuhnya tunas-tunas samping.

Kandungan partikulat yang terjerap pada permukaan daun berkisar antara 0,219 sampai $0,580 \mathrm{mg} / \mathrm{cm}^{2}$ luas permukaan daun. Kandungan partikulat yang paling banyak terdapat di Jalan Arifin Ahmad, dan yang paling sedikit terdapat di Jalan Riau. Secara umum kandungan partikulat yang terjerap pada permukaan daun lebih banyak terdapat pada jalan yang mempunyai arus lalu lintas yang lebih padat. Pada Jalan Sudirman dengan
kepadatan lalu lintas 6500 kendaraan/jam, jumlah partikulat yang terjerap pada permukaan daun lebih banyak $\left(0,447 \mathrm{mg} / \mathrm{cm}^{2}\right)$. Hal ini mengindikasikan bahwa partikulat yang terjerap pada permukaan daun sebagian berasal dari gas hasil buangan kendaraan bermotor yang melintasi jalan raya. Tingginya kandungan partikulat pada permukaan daun yang terdapat di Jalan Arifin Ahmad selain disebabkan oleh gas hasil buangan kendaraan bermotor diduga juga disebabkan oleh debu yang berasal dari aktifitas pengerjaan dan pelebaran jalan yang sedang dilakukan.

Menurut Kusnoputranto (1996), pencemaran yang berasal dari gas buang kendaraan bermotor mencapai 60% sampai 70% dari seluruh polutan di udara. Gas-gas yang dihasilkan dari sisa pembakaran bahan bakar kendaraan bermotor mengandung bahan-bahan pencemar di udara diantaranya adalah $\mathrm{NO}_{2}, \mathrm{SO}_{2}$, Pb dan bahan pencemar lainnya. Bahan pencemar dapat mempengaruhi proses metabolisme individu tumbuhan yang menyebabkan terhambatnya pertumbuhan dan perkembang biakan serta toleransi terhadap lingkungan dan terhadap tekanan kompetisi (Kovacs, 1992). Pada tingkat seluler, Pb dapat berikatan erat dengan sejumlah besar molekul seperti asam amino, enzim, haemoglobin, RNA dan DNA di dalam sel sehingga dapat merusak beberapa jalur metabolisme pada tubuh makhluk hidup (O'Neil, 1994).

Salah satu komponen gas beracun yang berasal dari sisa pembakaran bahan bakar minyak yang terdapat pada kendaraan bermotor adalah timbal (Pb). Kurang lebih $75 \% \mathrm{~Pb}$ yang ditambahkan pada bahan bakar minyak akan diemisikan kembali dan tersebar di atmosfir (O'neil, 1994). Kendaraan bermotor merupakan sumber utama timbal yang mencemari udara di daerah perkotaan (Goldmisth dan Hexter, 1967 dalam Dahlan, 1992). Diperkirakan sekitar 60 sampai 70% dari partikel timbal di udara perkotaan berasal dari kendaraan bermotor (Krishnayya dan Bedi, 1986 dalam Dahlan 1992).

Untuk menetralisir pengaruh polutan Pb di udara perlu dilakukan penanaman pohon pelindung jalan terutama dengan jenis-jenis pohon yang dapat menjerap dan menyerap timbal dari udara. Menurut Dahlan (1989): Fakuara, Dahlan, Husin, Ekarelawan, Danur, Pronggodigdo dan Sigit (1990) dalam Dahlan 1992, jenis damar (Agathis alba), mahjoni (Swietenia macrophylla), jamuju (Podocarpus-

Tabel 4. HasiI Pengukuran Suhu, Kelembaban Relatif Udara dan Intensitas Cahaya Selama Penelitian

Lokasi	Waktu	Ternaung			Terdedah		
		Suhu	Rh Udara	Cahaya	Suhu	Rh Udara	Cahaya
		(${ }^{\circ} \mathrm{C}$)	(\%)	(lux)	(${ }^{\circ} \mathrm{C}$)	(\%)	(lux)
1	Pagi Siang	22.4	94.0	3150.0	24.8	90.6	6666.0
		31.8	68.6	12233.0	36.7	65.3	82500.0
II	Pagi Siang	25.4	90.0	3900.0	26.3	87.6	22666.0
		34.8	73.0	14500.0	38.9	63.0	73133.0
III	Pagi Siang	28.0	79.6	13400.0	28.8	79.0	34200.0
		34.0	57.3	17200.0	39.8	51.3	91000.0
IV	Pagi Siang	26.5	89.5	5100.0	28.2	86.0	9533.0
		33.5	58.0	13350.0	35.4	52.6	30033.0
V	Pagi Siang	26.6	84.3	5400.0	27.0	82.6	10766.0
		34.0	57.3	15666.0	38.4	48.6	54233.0
VI	Pagi Siang	29.3	74.0	2433.0	30.0	73.3	29166.0
		33.9	55.3	14133.0	36.1	54.3	36633.0
VII	Pagi Siang	24.9	94.0	3133.0	25.2	90.6	6566.0
		31.5	66.0	14833.0	39.7	62.3	77633.0
Reta-rata:							
	Pagi	26.2	86.5	5216.6	27.2	84.2	17080.4
	Siang	33.4	62.2	14559.3	37.9	56.8	63595.0

Selisih ternaung dan terdedah:

Pagi	1.0	2.2	1863.9
Siing	4.5	5.4	49035.7

Pagi : 07. ${ }^{00}-09 .{ }^{00}$ wib
Siang $\quad: 11 .{ }^{00}-13 .{ }^{00}$ wib
imbricatus), dan Pala (Mirystica fragrans), asam landi (Pithecelobium dulce), johar (Cassia siamea) mempunyai kemampuan yang sedang sampai tinggi dalam menurunkan kandungan timbal dari udara.
Hasil pengukuran suhu, kelembaban relatif udara dan intensitas cahaya dicantumkan pada tabel 4. Dari tabel dapat dilihat bahwa suhu dan intensitas cahaya di bawah naungan pohon lebih rendah dibandingkan dengan pada daerah terbuka, sedangkan kelembaban relatif udara di bawah naungan pohon lebih tinggi dibandingkan dengan di daerah terbuka. Penurunan suhu dan intensitas cahaya serta peningkatan kelembaban relatif udara di bawah naungan pohon pada siang hari lebih besar dibandingkan dengan pagi hari. Hal ini menunjukkan bahwa keberadaan pohon pelindung jalan dapat memperbaiki kualitas udara terutama suhu, kelembaban dan intensitas cahaya.

Kesimpulan

Dari hasil penelitian dapat disimpulkan sebagai berikut :

1. Pohon pelirdung jalan Kota Pekanbaru terdiri dari 18 jenis yang tergabung ke dalam 13 Suku, didominasi oleh jenis-jenis Pterocarpus indicus, Swietenia mahagoni dan Acacia mangium.
2. Indeks keanekaragaman jenis pohon pelindung jalan di Kota Pekanbaru masih tergolong sedang yaitu berkisar antara 0,692-1,641
3. Kerapatan pohon pelindung jalan di Kota Pekanbaru masih tergolong rendah berkisar antara 1,583-6,6 pohon/100 meter panjang ruas jalan
4. Kerimbunan tajuk pohon pelindung jalan di Kota Pekanbaru masih tergolong rendah berkisar antara $7,285-30,341 \mathrm{~m} / 100$ meter panjang ruas jalan
5. Kandungan partikulat pada permukaan daun pohon pelindung jalan di Kota Pekanbaru berkisar antara $0,219-0,580 \mathrm{mg} / \mathrm{cm}^{2}$ luas permukaan daun.

Daftar Kepustakaan

Fandeli, C. 1990. Hutan Kota dan Kualitas Lingkungan. Majalah Duta Rimba, Edisi November - Desember, 39-43.
Hermanto. 2000. Keragaman dan Komposisi Tanaman Pelindung Tepi Jalan Kota Surabaya. Lembaga Penelitian Universitas Airlangga, Surabaya
Kovacs, M. 1992. (Ed). Biological Indicators in Environmental Protection. Ellis Horwood, New York.

Kusnoputranto, H. 1996. Dampak Pencemaran Udara dan Air Terhadap Kesehatan dan Lingkungan. Jurnal Lingkungan dan Pembangunan, Vol. XVI (3), 210-224.
Mueller-Dombois dan H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley and Sons, New York.
Odum, E.P. 1593. Dasar-dasar Ekologi. Edisi ke-3. Terjemahan Tjahyono Samingan, Gadjahmada University Press, Yogyakarta
O^{\prime} 'Neill, P. 1993. Environmental Chemistry. $2^{\text {nd }}$ ed. Chapman \& Hall.London.
Zoeraini. 1998. Tantangan Lingkungan dan Lansekap Hutan Kota. PT. Pustaka Cidesindo, Jakarta.
Dahlan, E.N. 1992. Hutan Kota. Untuk pengelolaan dan Peningkatan Kualitas Lingkungan Hidup. PT. Enka Parahayangan, Jakarta

[^0]: * Penulis untuk korespondensi

